Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[4-(dimethylamino)pyridinium] 3.75-bromido-0.25-chloridodiphenylplumbate(IV)

Kong Mun Lo and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 24 November 2008; accepted 1 December 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.022; wR factor = 0.048; data-to-parameter ratio = 20.0.

The Pb^{IV} atom of the plumbate dianion in the title compound, $(C_7H_{11}N)_2$ [Pb(Br_{3.75}Cl_{0.25})(C₆H₅)₂], lies on a centre of inversion in a tetragonally compressed octahedral geometry. One of the attached Br atoms is disordered with respect to a Cl atom in a 7:1 ratio. The disordered halogen atom is an N-H···(Br/ Cl) hydrogen-bond acceptor for the cation.

Related literature

For the structure of the isostructural compound bis(4-dimethylaminopyridinium) tetrabromidodiphenyl-plumbate(IV), see: Lo & Ng (2008).

Experimental

Crystal data

 $(C_7H_{11}N)_2$ [Pb(Br_{3.75}Cl_{0.25})(C₆H₅)₂] $M_r = 916.27$ Monoclinic, $P2_1/n$ a = 9.5010 (2) Å b = 13.8916 (3) Å c = 10.9851 (2) Å $\beta = 92.996 (1)^{\circ}$ $V = 1447.88 (5) \text{ Å}^{3}$ Z = 2Mo K α radiation $\mu = 11.05 \text{ mm}^{-1}$ T = 100 (2) K

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.351, T_{max} = 0.405$ (expected range = 0.287–0.331)

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.022$ $wR(F^2) = 0.048$ S = 1.02 3327 reflections 166 parameters1 restraint $0.12 \times 0.11 \times 0.10 \text{ mm}$

10028 measured reflections 3327 independent reflections 2909 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.028$

Table 1

Selected bond lengths (Å).

X = Br, Cl.

Pb1-C1	2.184 (3)	Pb1-Br2	2.8885 (3)
Pb1 - X1	2.8523 (3)		

Table 2

Hydrogen-bond geometry (Å, °).

X = Br, Cl.

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1···X1	0.87 (1)	2.49 (2)	3.260 (3)	148 (4)

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2008).

We thank the University of Malaya for funding this study (grant No. FS339/2008A) for the purchase of the diffract-ometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2863).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
 Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
 Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m1222.
 Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
 Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Westrip, S. P. (2008). *publCIF*. In preparation.

supplementary materials

Acta Cryst. (2009). E65, m13 [doi:10.1107/S1600536808040312]

Bis[4-(dimethylamino)pyridinium] 3.75-bromido-0.25-chloridodiphenylplumbate(IV)

K. M. Lo and S. W. Ng

Experimental

Diphenyllead dichloride (1.3 g, 3 mmol) and 4-dimethylaminopyridine hydrobromide perbromide (1.1 g, 3 mmol) were heated in chloroform (100 ml) for an hour. The filtered solution when allowed to evaporate yielded large colorless crystals of (I).

Refinement

The carbon-bound H-atoms were placed in calculated positions (C—H = 0.95-0.98 Å) and refined as riding with $U_{iso}(H) = 1.2$ to $1.5U_{eq}(C)$. The ammonium H atom was located in a difference Fourier map, and was refined with a distance constraint of N—H = 0.88 (1) Å; its U_{iso} value was refined.

The two independent halogen atoms were initially refined as full-occupancy Br atoms; however, the difference Fourier map had a deep hole near one of the two. When this atom was allowed to refine as a mixture of bromine and chlorine, the refinement converged, and it gave the Br:Cl ratio as 0.88:0.12. The ratio was subsequently fixed as 0.875:0.125. Attempts to model the Br and Cl atoms on separate sites were not successful.

The published $(C_7H_{11}N)_2$ [PbBr₄ $(C_6H_5)_2$] structure (Lo & Ng, 2008) does not contain any chlorine as the compound was synthesized by the cleavage of tetraphenyllead by 4-aminomethylpyridine hydrobromide perbromide.

Figures

Fig. 1. View of the molecular structure of (I) at the 70% probability level. H atoms are drawn as spheres of arbitrary radius. Unlabelled atoms in the anion are generated by the symmetry operation (1 - x, 1 - y, 1 - z).

Bis[4-(dimethylamino)pyridinium] 3.75-bromido-0.25-chloridodiphenylplumbate(IV)

Crystal data $(C_7H_{11}N)_2$ [PbBr_{3.75}(C₆H₅)₂Cl_{0.25}] $M_r = 916.27$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn

 $F_{000} = 867$ $D_x = 2.102 \text{ Mg m}^{-3}$ Mo K α radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4255 reflections a = 9.5010 (2) Å *b* = 13.8916 (3) Å c = 10.9851 (2) Å $\beta = 92.996 (1)^{\circ}$ $V = 1447.88 (5) \text{ Å}^3$ Z = 2

Data collection

Bruker SMART APEX CCD diffractometer	3327 independent reflections
Radiation source: fine-focus sealed tube	2909 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.028$
T = 100(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 2.4^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -12 \rightarrow 12$
$T_{\min} = 0.351, \ T_{\max} = 0.405$	$k = -15 \rightarrow 18$
10028 measured reflections	$l = -14 \rightarrow 14$

 $\theta = 2.4 - 28.4^{\circ}$

 $\mu = 11.05 \text{ mm}^{-1}$

Faceted block, colourless $0.12\times0.11\times0.10~mm$

T = 100 (2) K

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.022$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.048$	$w = 1/[\sigma^2(F_o^2) + (0.0227P)^2 + 0.2619P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{\text{max}} = 0.001$
3327 reflections	$\Delta \rho_{max} = 0.77 \text{ e } \text{\AA}^{-3}$
166 parameters	$\Delta \rho_{\rm min} = -0.52 \ {\rm e} \ {\rm \AA}^{-3}$
1 restraint	Extinction correction: none
Primary atom site location: structure-invariant direct	

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional	atomic	coordinates	and	isotropic	or e	equivalent	isotropic	displa	acement	paramete	ers (Å	²)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Pb1	0.5000	0.5000	0.5000	0.01182 (5)	
Br1	0.55819 (4)	0.61268 (2)	0.29147 (3)	0.01476 (8)	0.875

Br2	0.76221 (3)	0.40251 (2)	0.46037 (3)	0.01660 (8)	
Cl1	0.55819 (4)	0.61268 (2)	0.29147 (3)	0.01476 (8)	0.125
N1	0.8894 (3)	0.5871 (2)	0.2345 (3)	0.0224 (7)	
H1	0.815 (3)	0.582 (3)	0.277 (3)	0.042 (13)*	
N2	1.1998 (3)	0.59111 (19)	-0.0113 (2)	0.0173 (6)	
C1	0.6143 (3)	0.6021 (2)	0.6197 (3)	0.0138 (6)	
C2	0.7445 (3)	0.6367 (2)	0.5890 (3)	0.0152 (7)	
H2	0.7856	0.6156	0.5167	0.018*	
C3	0.8144 (4)	0.7030 (2)	0.6660 (3)	0.0198 (7)	
Н3	0.9040	0.7271	0.6465	0.024*	
C4	0.7533 (4)	0.7336 (2)	0.7709 (3)	0.0191 (7)	
H4	0.8009	0.7790	0.8229	0.023*	
C5	0.6228 (4)	0.6982 (2)	0.8003 (3)	0.0204 (7)	
Н5	0.5814	0.7194	0.8724	0.024*	
C6	0.5527 (4)	0.6321 (2)	0.7248 (3)	0.0163 (7)	
Н6	0.4635	0.6076	0.7448	0.020*	
C7	1.0060 (4)	0.5338 (3)	0.2555 (3)	0.0208 (7)	
H7	1.0141	0.4941	0.3260	0.025*	
C8	1.1124 (4)	0.5356 (2)	0.1781 (3)	0.0189 (7)	
H8	1.1945	0.4980	0.1953	0.023*	
С9	1.1019 (3)	0.5933 (2)	0.0715 (3)	0.0146 (7)	
C10	0.9798 (4)	0.6523 (2)	0.0576 (3)	0.0189 (7)	
H10	0.9701	0.6959	-0.0089	0.023*	
C11	0.8778 (4)	0.6469 (2)	0.1382 (3)	0.0220 (8)	
H11	0.7962	0.6860	0.1267	0.026*	
C12	1.3282 (4)	0.5343 (3)	0.0091 (3)	0.0225 (7)	
H12A	1.3034	0.4683	0.0313	0.034*	
H12B	1.3872	0.5632	0.0752	0.034*	
H12C	1.3803	0.5332	-0.0656	0.034*	
C13	1.1938 (4)	0.6535 (3)	-0.1175 (3)	0.0267 (8)	
H13A	1.0952	0.6658	-0.1434	0.040*	
H13B	1.2414	0.6222	-0.1840	0.040*	
H13C	1.2409	0.7146	-0.0970	0.040*	

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pb1	0.01154 (9)	0.01443 (9)	0.00939 (8)	-0.00187 (6)	-0.00034 (6)	-0.00126 (6)
Br1	0.01359 (18)	0.01750 (17)	0.01320 (16)	0.00047 (13)	0.00073 (13)	0.00243 (12)
Br2	0.01506 (17)	0.02009 (17)	0.01462 (16)	0.00203 (12)	0.00038 (12)	-0.00043 (12)
Cl1	0.01359 (18)	0.01750 (17)	0.01320 (16)	0.00047 (13)	0.00073 (13)	0.00243 (12)
N1	0.0161 (17)	0.0309 (17)	0.0206 (16)	-0.0016 (13)	0.0056 (12)	-0.0050 (13)
N2	0.0201 (16)	0.0158 (14)	0.0162 (14)	0.0043 (11)	0.0029 (11)	0.0024 (11)
C1	0.0133 (17)	0.0130 (16)	0.0146 (16)	-0.0008 (12)	-0.0031 (12)	0.0003 (12)
C2	0.0157 (17)	0.0171 (16)	0.0127 (16)	0.0016 (13)	-0.0020 (12)	0.0004 (12)
C3	0.0186 (19)	0.0201 (18)	0.0204 (18)	-0.0036 (14)	-0.0008 (14)	0.0032 (13)
C4	0.024 (2)	0.0171 (18)	0.0156 (17)	-0.0024 (14)	-0.0081 (14)	-0.0015 (13)
C5	0.029 (2)	0.0191 (18)	0.0133 (16)	-0.0003 (14)	-0.0015 (14)	-0.0027 (13)

supplementary materials

C6	0.0147 (18)	0.0197 (17)	0.0143 (16)	0.0007 (13)	-0.0017 (13)	0.0031 (13)
C7	0.022 (2)	0.0252 (18)	0.0149 (17)	-0.0029 (15)	0.0004 (14)	-0.0010 (14)
C8	0.0188 (18)	0.0211 (17)	0.0170 (17)	0.0021 (14)	0.0014 (13)	-0.0004 (13)
C9	0.0158 (17)	0.0164 (16)	0.0113 (15)	-0.0013 (12)	-0.0011 (12)	-0.0051 (12)
C10	0.0213 (19)	0.0171 (17)	0.0183 (18)	0.0024 (14)	-0.0009 (14)	-0.0008 (13)
C11	0.0188 (19)	0.0229 (19)	0.0242 (19)	0.0047 (14)	-0.0015 (14)	-0.0052 (14)
C12	0.0190 (19)	0.0306 (19)	0.0180 (18)	0.0059 (15)	0.0027 (14)	0.0008 (15)
C13	0.032 (2)	0.028 (2)	0.0203 (19)	0.0065 (16)	0.0057 (16)	0.0057 (15)
Geometric part	ameters (Å, °)					
Pb1—C1 ⁱ		2.184 (3)	C4—(C5	1.38	8 (5)
Pb1—C1		2.184 (3)	C4—]	H4	0.95	00
Pb1—Br1		2.8523 (3)	С5—	C6	1.38	5 (4)
Pb1—Cl1 ⁱ		2.8523 (3)	C5—1	Н5	0.95	00
Pb1—Br1 ⁱ		2.8523 (3)	C6—1	H6	0.95	00
Pb1—Br2		2.8885 (3)	С7—	C8	1.35	5 (4)
Pb1—Br2 ⁱ		2.8885 (3)	C7—]	H7	0.95	00
N1—C7		1.342 (5)	C8—	С9	1.41	9 (4)
N1-C11		1.345 (5)	C8—1	H8	0.95	00
N1—H1		0.87(1)	С9—	C10	1.42	1 (4)
N2—C9		1.335 (4)	C10–	-C11	1.34	8 (5)
N2—C13		1.452 (4)	C10–	-H10	0.95	00
N2—C12		1.461 (4)	C11-	-H11	0.95	00
C1—C6		1.385 (4)	C12-	-H12A	0.98	00
C1—C2		1.385 (4)	C12–	-H12B	0.98	00
C2—C3		1.395 (4)	C12-	-H12C	0.98	00
C2—H2		0.9500	C13–	-H13A	0.98	00
C3—C4		1.383 (4)	C13-	-H13B	0.98	00
сз—нз		0.9500	C13-	-H13C	0.98	00
C1 ^I —Pb1—C1		180.00 (12)	C3—(C4—C5	120.	2 (3)
C1 ¹ —Pb1—Br1		89.09 (8)	C3—0	С4—Н4	119.	9
C1—Pb1—Br1		90.91 (8)	C5—0	C4—H4	119.	9
C1 ⁻ _Pb1_Cl1 ⁺		90.91 (8)	C6—0	C5—C4	120.	2 (3)
C1—Pb1—Cl1 ¹		89.09 (8)	C6—	С5—Н5	119.	9
Br1—Pb1—Cl1	1	180.0	C4—	С5—Н5	119.	9
C1 ¹ —Pb1—Br1 ¹	1	90.91 (8)	C5—	C6—C1	119.	2 (3)
C1—Pb1—Br1 ⁱ		89.09 (8)	C5—4	С6—Н6	120.	4
Br1—Pb1—Br1	i	180.0	C1—	С6—Н6	120.	4
Cl1 ⁱ —Pb1—Br1	i	0.000 (17)	N1—	С7—С8	121.	2 (3)
C1 ⁱ —Pb1—Br2		90.60 (8)	N1	С7—Н7	119.	4
C1—Pb1—Br2		89.40 (8)	C8—4	С7—Н7	119.	4
Br1—Pb1—Br2		86.065 (9)	C7—4	С8—С9	120.	4 (3)
Cl1 ⁱ —Pb1—Br2	2	93.935 (9)	C7—4	С8—Н8	119.	8
Br1 ⁱ —Pb1—Br2	2	93.935 (9)	С9—	С8—Н8	119.	8

C1 ⁱ —Pb1—Br2 ⁱ	89.40 (8)	N2—C9—C8	121.9 (3)
C1—Pb1—Br2 ⁱ	90.60 (8)	N2—C9—C10	122.3 (3)
Br1—Pb1—Br2 ⁱ	93.935 (9)	C8—C9—C10	115.9 (3)
Cl1 ⁱ —Pb1—Br2 ⁱ	86.065 (9)	C11—C10—C9	120.5 (3)
Br1 ⁱ —Pb1—Br2 ⁱ	86.065 (9)	С11—С10—Н10	119.7
Br2—Pb1—Br2 ⁱ	180.0	С9—С10—Н10	119.7
C7—N1—C11	120.6 (3)	N1-C11-C10	121.2 (3)
C7—N1—H1	124 (3)	N1—C11—H11	119.4
C11—N1—H1	116 (3)	C10-C11-H11	119.4
C9—N2—C13	122.3 (3)	N2—C12—H12A	109.5
C9—N2—C12	120.9 (3)	N2-C12-H12B	109.5
C13—N2—C12	116.3 (3)	H12A—C12—H12B	109.5
C6—C1—C2	121.3 (3)	N2-C12-H12C	109.5
C6—C1—Pb1	118.6 (2)	H12A—C12—H12C	109.5
C2—C1—Pb1	120.1 (2)	H12B—C12—H12C	109.5
C1—C2—C3	119.0 (3)	N2-C13-H13A	109.5
С1—С2—Н2	120.5	N2—C13—H13B	109.5
С3—С2—Н2	120.5	H13A—C13—H13B	109.5
C4—C3—C2	120.1 (3)	N2—C13—H13C	109.5
С4—С3—Н3	120.0	H13A—C13—H13C	109.5
С2—С3—Н3	120.0	H13B—C13—H13C	109.5
Br1—Pb1—C1—C6	133.5 (2)	C4—C5—C6—C1	-0.2 (5)
Cl1 ⁱ —Pb1—C1—C6	-46.5 (2)	C2—C1—C6—C5	0.2 (5)
Br1 ⁱ —Pb1—C1—C6	-46.5 (2)	Pb1—C1—C6—C5	-178.8 (2)
Br2—Pb1—C1—C6	-140.4 (2)	C11—N1—C7—C8	-2.8 (5)
Br2 ⁱ —Pb1—C1—C6	39.6 (2)	N1—C7—C8—C9	-0.8 (5)
Br1—Pb1—C1—C2	-45.5 (2)	C13—N2—C9—C8	-176.7 (3)
Cl1 ⁱ —Pb1—C1—C2	134.5 (2)	C12—N2—C9—C8	-4.9 (5)
Br1 ⁱ —Pb1—C1—C2	134.5 (2)	C13—N2—C9—C10	4.3 (5)
Br2—Pb1—C1—C2	40.6 (2)	C12—N2—C9—C10	176.2 (3)
Br2 ⁱ —Pb1—C1—C2	-139.4 (2)	C7—C8—C9—N2	-174.7 (3)
C6—C1—C2—C3	0.0 (5)	C7—C8—C9—C10	4.3 (5)
Pb1—C1—C2—C3	179.0 (2)	N2-C9-C10-C11	174.6 (3)
C1—C2—C3—C4	-0.3 (5)	C8—C9—C10—C11	-4.4 (5)
C2—C3—C4—C5	0.3 (5)	C7—N1—C11—C10	2.6 (5)
C3—C4—C5—C6	-0.1 (5)	C9—C10—C11—N1	1.1 (5)
Symmetry codes: (i) $-x+1, -y+1, -z+1$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1…Br1	0.87 (1)	2.49 (2)	3.260 (3)	148 (4)

